ALGEBRA QUESTIONS
IF a = 997, b = 998, c = 999,
THEN,
FIND, a^3 + b^3 + c^3 - 3abc
WITH THE FORMULA OF,
a^3 + b^3 + c^3 - 3abc = (a + b + c)/2{(a-b)^2 + (b - c)^2 + (c - a)^2}
(997 + 998 + 999)/2{(997 - 998)^2 + (998 - 999)^2 + (999 - 997)^2}
2994/2 * 1 + 1+ 4
2994/2 * 6
2994 * 3
8982
THEN,
FIND, a^3 + b^3 + c^3 - 3abc
WITH THE FORMULA OF,
a^3 + b^3 + c^3 - 3abc = (a + b + c)/2{(a-b)^2 + (b - c)^2 + (c - a)^2}
(997 + 998 + 999)/2{(997 - 998)^2 + (998 - 999)^2 + (999 - 997)^2}
2994/2 * 1 + 1+ 4
2994/2 * 6
2994 * 3
8982
Comments
Post a Comment